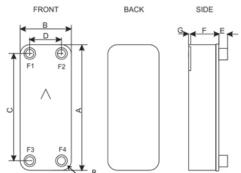


SINGLE PHASE - Design Heat Exchanger : B85Hx50/1P


Fluid Side 1 : Fluid Side 2 :	Water Water				
	Water				
Side 1 :	Outer circuit				
Side 2 :	Inner circuit				
Flow Type :	Counter-Curre	ant			
SSP Alias :	B85	5111			
DUTY REQUIREMENTS			Side 1		Side 2
Heat load		kW	Side i	150,0	Side 2
Inlet temperature		°C	60,00	100,0	8,00
Outlet temperature		°C	25,00		55,00
Flow rate		kg/s	1,026		0,7638
Thermal length		Kg/3	3,569		4,793
			3,309		4,795
PLATE HEAT EXCHANG	ER		Side 1		Side 2
Total heat transfer area		m²		2,88	
Heat flux		kW/m²		52,1	
Mean temperature differer	nce	К		9,81	
O.H.T.C. (available/required)		W/m²,°C		5520/5310	
Pressure drop -total*		kPa	18,0		11,6
- in ports		kPa	0,687		0,380
Port diameter		mm	33,0/33,0		33,0/33,0
			(up/down)		(up/down)
Number of channels per p	ass		25		24
Number of plates				50	
Oversurfacing		%		4	
Fouling factor		m²,°C/kW		0,007	
Reynolds number			1164		728,4
Port velocity		m/s	1,21/1,21		0,897/0,897
			(up/down)		(up/down)
PHYSICAL PROPERTIES	3		Side 1		Side 2
Reference temperature		°C	42,50		31,50
Dynamic viscosity		cP	0,624		0,773
Dynamic viscosity - wall		cP	0,680		0,690
Density		kg/m³	991,3		995,2
Heat capacity		kJ/kg,°C	4,179		4,178
Thermal conductivity		W/m,°C	0,6340		0,6178
Largest wall temperature	difference	K	0,0010	1,52	0,0170
Minimum wall temperature		°C	18,10	.,	16,57
Maximum wall temperatur		°C	57,97		57,52
Film coefficient	~	W/m²,°C	13600		11000
Average wall temperature		°C	37,95		37,15
Channel velocity		m/s	0,222		0,172
Shear stress		Pa	30,3		19,7
Undal Suess		га	50,5		13,1

TOTALS

Total weight empty	kg	8,92
Total weight filled	kg	13,5
Hold-up volume, inner circuit	dm³	2,26
Hold-up volume, outer circuit	dm³	2,35
Port size F1/P1	mm	33,0
Port size F2/P2	mm	33,0
Port size F3/P3	mm	33,0
Port size F4/P4	mm	33,0
NND F1/P1	mm	36,0 and/or 27,0
NND F2/P2	mm	27,0 and/or 36,0
NND F3/P3	mm	36,0 and/or 27,0
NND F4/P4	mm	36,0 and/or 27,0
Carbon footprint	kg	62,7

DIMENSIONS

Α	mm	526 +/-2
В	mm	119 +/-1
С	mm	470 +/-1
D	mm	63 +/-1
E	mm	27 (opt. 45) +/-1
F	mm	96,00 +/-3%
G	mm	6 +/-1
R	mm	23

This is a schematic sketch. For correct drawings please use the order drawing function or contact your SWEP representative.

Disclaimer: Data used in this calculation is subject to change without notice. SWEP strives to use "best practice" for the calculations leading to the above results. Calculation is intended to show thermal and hydraulic performance, no consideration has been taken to mechanical strength of the product. Product restrictions - such as pressure, temperatures and corrosion resistance- can be found in SWEP product sheets and other technical documentation. SWEP may have patents, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from SWEP, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. To the maximum extent permitted by applicable law, the software, the calculations and the results are provided without warranties of any kind, whether express or implied. No advice or information obtained through use of the software (including information provided in the results), will create any warranty not expressly stated in the applicable license terms. Without limiting the foregoing, SWEP does not warrant that the content (including the calculations and the results) is accurate, reliable or correct. SWEP does not warrant that any system comprising heat exchanger and other components, installed on the basis of calculations in this software, will meet your requirements or function to your satisfaction or expectations.

*Excluding pressure drop in connections.

CW5RUEQRQPZTA76GKPJGSGYHMKQMFEYYWDLZU3Q